当前位置:首页 > 数学课件 > 正文内容

高三二项式定理公开课课件(高三二项式定理题型)

zhao_admin4周前 (04-20)数学课件5

二项式定理总数和定理?

二项式定理系数和公式是(ax十b)ⁿ,二项式定理(英语:binomial theorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。

二项式定理可以推广到任意实数次幂,即广义二项式定理。 牛顿以二项式定理作为基石发明出了微积分。其在初等数学中应用主要在于一些粗略的分析和估计以及证明恒等式等。

这个定理在遗传学中也有其用武之地,具体应用范围为:推测自交后代群体的基因型和概率、推测自交后代群体的表现型和概率、推测杂交后代群体的表现型分布和概率、通过测交分析杂合体自交后代的性状表现和概率、推测夫妻所生孩子的性别分布和概率、推测平衡状态群体的基因或基因型频率等。

乘法二项式定理?

二项式定理是初中学习的多项式乘法的继续,它所研究的是一种特殊的多项式——二项式的乘法的展开式,这一小节与不少内容都有着密切联系,特别是它在本章学习中起着承上启下的作用.学习本小节的意义主要在于:

(1)由于二项式定理与概率理论中的三大概率分布之一-----二项分布有内在联系,本小节是学习后面的概率知识以及进一步学习概率统计的准备知识. (2)由于二项式系数都是一些特殊的组合数,利用二项式定理可得到关于组合数的一些恒等式,从而深化对组合数以及计数原理的认识. (3)基于二项式展开式与多项式乘法的联系,本小节的学习可对初中学习的多项式的变形起到复习、深化的作用. (4)二项式定理是解决某些整除性、近似计算问题的一种方法. 2.教学的重点·难点 根据以上分析和新课标的教学要求确定了以下:

重点:二项定理的推导及运用 难点:二项式定理及通项公式的运用

二项式定理计算?

二项式定,又称牛顿二项式定理,该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。

二项式是指两个变量和的正整数次方的展开式,n次展开式的展开项的种类是n+1种,因为展开之后的每项的次数之和都是n次,一共有n+1种两个变量指数次数的组合。

二项式定理 取法?

对于任意正整数n,都有

(a+b)n=Cn0an+Cn1an−1b+⋯+Cnkan−kbk+⋯+Cnnbn。这个式子叫做二项式定理,等号右边的多项式叫做

(a+b)n的二项展开式,其中各项的系数

Cnk(k∈0,1,2,⋯,n)叫做二项式系数。

二项式定理中间项数?

利用通项,当有奇数项为中间一项,此时n为偶数;当有偶数项时为中间两项,此时n为奇数。当n为偶数,将n/2代入通项中的变量;当n为奇数,将(n-1)/2和(n+1)/2代入通项中的变量;利用二项展开式的通项公式解决二项展开式的特定项问题、考查二项式定理展开式共n+1项.

二项式定理推广公式?

二项式定理(英语:binomial theorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。

在阿拉伯,10世纪,阿尔

·卡拉吉已经知道二项式系数表的构造方法:每一列中的任一数等于上一列中同一行的数加上该数上面一数。11~12世纪奥马海牙姆将印度人的开平方、开立方运算推广到任意高次,因而研究了高次二项展开式。

13世纪纳绥尔丁在其《算板与沙盘算法集成》中给出了高次开方的近似公式,并用到了二项式系数表。15世纪,阿尔

·卡西在其《算术之钥》中介绍了任意高次开方法,并给出了直到九次幂的二项式系数表,还给出了二项式系数表的两术书中给出了一张二项式系数表,其形状与贾宪三角一样。

16世纪,许多数学家的书中都载有二项式系数表。1654年,法国的帕斯卡最早建立了一般正整数次幂的二项式定理,因此算术三角形在西方至今仍以他的名字命名。1665年,英国的牛顿将二项式定理推广到有理指数的情形。

18世纪,瑞士的欧拉和意大利的卡斯蒂隆分别采用待定系数法和“先异后同”的方法证明了实指数情形的二项式定理。

二项式定理求导公式?

1.二项式定理论述说的是(a+b)n的展开式求导的

2.我们在求导中只要有初步的代数知识和足够的毅力就可以列出一下二项式

3.如:(a+b)2=a2+2ab+b2 (a+b)3=a3+3a2b+3ab2+b3 (a+b)4=a4+4a3b+6a2b2+4ab3+b4

二项式定理,公式汇总?

(a+b)^n=cnoa^n+cn1a^(n一I)b+…。

二项式定理怎么证明?

证明:当n=1时,左边=(a+b)1=a+b

右边=C01a+C11b=a+b;左边=右边

假设当n=k时,等式成立,即(a+b)n=C0nan+C1n a(n-1)b十…十Crn a(n-r)br十…十Cnn bn成立;

则当n=k+1时, (a+b)(n+1)=(a+b)n*(a+b)=[C0nan+C1n a(n-1)b十…十Crn a(n-r)br十…十Cnn bn]*(a+b)

=[C0nan+C1n a(n-1)b十…十Crn a(n-r)br十…十Cnn bn]*a+[C0nan+C1n a(n-1)b十…十Crn a(n-r)br十…十Cnn bn]*b

=[C0na(n+1)+C1n anb十…十Crn a(n-r+1)br十…十Cnn abn]+[C0nanb+C1n a(n-1)b2十…十Crn a(n-r)b(r+1)十…十Cnn b(n+1)]

=C0na(n+1)+(C0n+C1n)anb十…十(C(r-1)n+Crn) a(n-r+1)br十…十(C(n-1)n+Cnn)abn+Cnn b(n+1)]

=C0(n+1)a(n+1)+C1(n+1)anb+C2(n+1)a(n-1)b2+…+Cr(n+1) a(n-r+1)br+…+C(n+1)(n+1) b(n+1)

∴当n=k+1时,等式也成立;

所以对于任意正整数,等式都成立

二项式定理判断项数?

(a十b)^n =C(n)0·a^n·b°十C(n)2·a^(n-2)b²十···十C(n)r·α^(n-r)·b^r十··· 十C(n)n·a°b^n 通项:Tr十1=C(n)ra^(n-r)·b^r, 第r十1项是上式,如第5项即r十1=5,这里r=4。

扫描二维码推送至手机访问。

版权声明:本文由PPT写作技巧发布,如需转载请注明出处。

本文链接:http://www.ppt3000.com/post/105359.html

标签: {$tag}
分享给朋友:

相关文章