当前位置:首页 > 地理课件 > 正文内容

线段中点问题典型例题及答案?

zhao_admin2023-11-17 06:32:28地理课件1

线段中点问题典型例题及答案?

线段中点典型例题(双中点典型)与答案

例题,已知C点是线段AB的延长线上的点,点M是AC的中点。点N是线段CB的中点。若AB=8cm. 求MN的长是多少?

答案,MN=BM+BN=

1/2AC-1/2CB=1/2AB=4

问题中的MN是一个定长=1/2AB

洛必达法则高中典型例题及答案?

洛必达法则是高中数学重要的极限计算方法。洛必达法则是通过求函数的导数来求函数极限的方法,适用于分数形式、无穷大形式等多种极限计算题型,因此在高中数学教学中被广泛应用。下面是一道典型的洛必达法则极限计算题:lim(x→∞) [(x^2+9)/(x+3)]使用洛必达法则,先求分子和分母的导数:f'(x) = 2x,g'(x) = 1所以原式极限为:lim(x→∞) [(x^2+9)/(x+3)] = lim(x→∞) [2x/(1)] = ∞这道题充分展示了洛必达法则的应用,也说明了在高中数学学习中,掌握洛必达法则可以解决许多极限计算问题。

范德蒙行列式典型例题及答案?

范德蒙行列式的标准形式为:

       即n阶范德蒙行列式等于这个数的所有可能的差的乘积。根据范德蒙行列式的特点,可以将所给行列式化为范德蒙德行列式,然后利用其结果计算。

        范德蒙行列式就是在求线形递归方程通解的时候计算的行列式.若递归方程的n个解为a1,a2,a3,...,an

       共n行n列用数学归纳法. 当n=2时范德蒙德行列式D2=x2-x1范德蒙德行列式成立 现假设范德蒙德行列式对n-1阶也成立,对于n阶有: 首先要把Dn降阶,从第n列起用后一列减去前一列的x1倍,然后按第一行进行展开,就有Dn=(x2-x1)(x3-x1)...(xn-x1)∏ (xi-xj)(其中∏ 表示连乘符号,其下标i,j的取值为n>=i>j>=2)于是就有Dn=∏ (xi-xj)(下标i,j的取值为n>=i>j>=1),原命题得证。

对数函数的奇偶性典型例题及答案?

对数函数本身没有奇偶性,但是与对数函数有关的函数具有奇偶性的很多,常见的如下:

(1)y=loga|x|

这种函数一定是奇函数,若a>1,则在(-∞,0)上递减,在(0,+∞)上递增。

若0<a<1时,在(-∞,0)上递增,在(0,+∞)上递减。

(2)y=loga(x-m)/(x+m)

例题:函数y=loga(x-m)/(x+2)是奇函数,则m=?

有题意可得,m=2.

(3)y=loga(x+根号x^2+1)

例如:已知函数y=xlog2(x+根号下x^2+2a^2)是偶函数,求a的值。

由已知可知,函数y=log2(x+根号下x^2+2a^2)是奇函数,则2a^2=1,所以,a=±根号2/2。

计算irr例题及答案?

1.(IRR-15%)/(20%-15%)=(0-6.65)/(-3.7-6.65)

IRR=15%+(20%-15%)*(0-6.65)/(-3.7-6.65)=18.21%

2.假设NPV(5%)=m,NPV(10%)=n

(IRR-5%)/(10%-5%)=(0-m)/(n-m)

IRR=5%+(10%-5%)*(0-m)/(n-m)

一般公式是NPV(r1)=m,NPV(r2)=n

IRR=r1+(r2-r1)*(0-m)/(n-m)

r1和r2最好不要相差太大,否则误差也会大些

诗歌赏析例题及答案?

读《春 雪》,回答问题:

《春雪》

韩 愈

新年都未有芳华,

二月初惊见草芽。

白雪却嫌春色晚,

故穿庭树作飞花。

问题:

⑴诗中“惊”字表现了作者什么样的心情?(1分)

答:表现了作者突见春色萌芽时惊喜的心情

(2).简要赏析三、四句运用修辞手法的妙处。(3分)

答:三、四句运用拟人的修辞手法,把白雪描绘得美好而富有情趣,表现了它带给人的欣喜之感。白雪等不及春色的姗姗来迟,特意穿树飞花,装点出一派春色,突出了雪通人心的灵性。

解析“惊”字似乎不是表明诗人为二月刚见草芽而吃惊、失望,而是在焦急的期待中终于见到“春色”的萌芽而惊喜。(2) “却嫌”、“故穿”, 运用拟人的修辞手法,把春雪描绘得多么美好而有灵性,饶富情趣。

函数单调区间例题及答案?

        举两个简单的例子探讨之。

        1.求函数y=x^2的单调区间。

        解:函数y=x^2的单调递减区间为(-∞,0),单调递增区间为[0,+∞)。

         2.求函数y=sin(2x-丌/4)的单调区间。

        解:根据基本初等三角函数y=sinx的单调区间可知,2k丌-丌/2<2x-丌/4<2k丌+丌/2,即k丌-丌/8<x<k丌+3丌/8(k∈Z)为函数y=sin(2x-丌/4)的单调递增区间。同理可得,k丌-5丌/8<x<k丌+3丌/8(k∈Z)为函数y=sin(2x-丌/4)的单调递减区间。

帕德逼近例题及答案?

帕德逼近例题可以通过利用线性代数和矩阵论的方法进行推导,这里简要介绍一下其中的思路和步骤:

答:假设有一组由n个数据点构成的二元数据集 {(x1, y1), (x2, y2), ... , (xn, yn)},我们要用一个多项式函数f(x)去逼近这些数据点。

首先,我们可以将f(x)表示为一个多项式形式,如f(x) = a0 + a1x + a2x^2 + ... + amx^m,其中m为多项式的次数,a0, a1, a2, ..., am为待求的系数。

然后,我们可以将多项式的系数表示成一个向量a = [a0, a1, a2, ..., am]T,其中T表示矩阵或向量的转置。

接着,我们可以将每个数据点(x, y)表示为一个向量v = [1, x, x^2, ..., x^m],其中1表示常数项,x, x^2, ..., x^m表示多项式的各个次幂。

将所有数据点对应的向量v排列成一个矩阵X,其中每一行表示一个数据点对应的向量,可以得到如下矩阵方程:

Xa = y

其中y表示所有数据点对应的目标值向量,即[y1, y2, ..., yn]T。

为了求解未知的系数向量a,我们需要对上述矩阵方程进行求解。由于该方程通常是一个超定的线性方程组,即数据点数量n大于多项式次数m,因此我们需要使用最小二乘法来求解。最小二乘法的基本思想是通过最小化残差平方和来找到最优解。残差指的是每个数据点的预测值与真实值之间的差异,即ei = yi - f(xi)。

将残差平方和写成向量形式,即eTe,可以得到最小二乘问题的目标函数:

min ||Xa - y||2 = min (Xa - y)T(Xa - y)

通过对目标函数求导,并令导数为0,可以得到系数向量a的最优解:

a = (XTX)-1XTy

其中,XT表示X的转置矩阵,(XTX)-1表示XTX的逆矩阵。这就是帕德逼近公式的推导过程。

支票的填制例题及答案?

答:支票的填写:

1.时间.例:贰零贰壹年零伍月贰拾壹日。用途:付工资款。小写:¥16382。大写:零十壹万陆仟叁佰捌拾贰元。

uc矩阵的例题及答案?

U/C矩阵的正确性,可由三方面来检验:

(1) 完备性检验.这是指每一个数据类必须有一个产生者(即“C”) 和至少有一个使用者(即“U”) ;每个功能必须产生或者使用数据类.否则这个U/C矩阵是不完备的.

(2) 一致性检验.这是指每一个数据类仅有一个产生者,即在矩阵中每个数据类只有一个“C”.如果有多个产生者的情况出现,则会产生数据不一致的现象.

(3) 无冗余性检验.这是指每一行或每一列必须有“U” 或“C”,即不允许有空行空列.若存在空行空列,则说明该功能或数据的划分是没有必要的、冗余的.

将U/C矩阵进行整理,移动某些行或列,把字母“C” 尽量靠近U/C矩阵的对角线,可得到C符号的适当排列.

扫描二维码推送至手机访问。

版权声明:本文由PPT写作技巧发布,如需转载请注明出处。

本文链接:http://www.ppt3000.com/post/184964.html

分享给朋友: